A Viscoelastic Hybrid Shell Finite Element

Arthur R. Johnson
Vehicle Technology Directorate, MS 240
Army Research Laboratory,
NASA Langley Research Center
Hampton, VA 23681-0001

Abstract

An elastic large displacement thick-shell hybrid finite element is modified to
allow for the calculation of viscoelastic stresses. Internal strain variables are in-
troduced at the element’s stress nodes and are employed to construct a viscous
material model. First order ordinary differential equations relate the internal
strain variables to the corresponding elastic strains at the stress nodes. The
viscous stresses are computed from the internal strain variables using viscous
moduli which are a fraction of the elastic moduli. The energy dissipated by the
action of the viscous stresses is included in the mixed variational functional.
Nonlinear quasi-static viscous equilibrium equations are then obtained. Previ-
ously developed Taylor expansions of the equilibrium equations are modified to
include the viscous terms. A predictor-corrector time marching solution algo-
rithm is employed to solve the algebraic-differential equations. The viscous shell
element is employed to numerically simulate a stair-step loading and unloading
of an aircraft tire in contact with a frictionless surface.
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Introduction

Alircraft tires are composite structures manufactured with viscoelastic materi-
als such as carbon black filled rubber and nylon cords. When loaded, tires
experience large deflections and moderately large strains [2]. Finite element
models of tires typically employ either two-dimensional thick shell or three-
dimensional solid elements [3, 15]. Elastic finite element shell models for tires
have been used to predict the shape of tire footprints as a function of load-
ing [10, 13, 14, 18, 19, 20]. Elastic models do not include the viscoelastic nature
of the tire which can have a significant eflect on load-displacement curves. In
this paper the quasi-static viscoelastic loading and unloading of an aircraft tire
is numerically simulated. An experimental effort, is reported elsewhere [11].

In several previous papers viscoelastic constitutive models have been utilized
to determine the dynamic deformations of tires. The following references are
provided as a starting point for readers interested in obtaining details about



other viscoelastic finite element models for tires. Padovan, et al. [9, 12, 16]
performed an extensive study in which a finite element algorithm was developed
for rolling tires. Padovan’s model included the effects of large deformations and
contact. It also employed fractional derivatives to model the viscoelastic effects.
The tire models made by Oden et al. [3, 15] also included the effects of large
deformations and contact. However, Oden’s model employed the history integral
formulation for the viscoelastic effects.

In this paper, internal strain variables are employed to convert an elas-
tic hybrid shell element [14] into a viscous mixed shell element. The model
is developed as follows. Internal strain variables are introduced at the stress
nodes of the mixed element. First order differential equations relate the inter-
nal variables to the physical strain variables. The equations represent a Maxwell
solid [4, 5, 6, 7, 21]. Viscous stresses are determined from the internal strains
by using material parameters referred to as viscous moduli. An expression for
the energy dissipated during deformation is computed from the viscous stresses.
This is accomplished by employing the finite element interpolations that are
used to compute the stresses from the strains in the elastic version of the shell
element. The dissipation energy functional is added to the mixed variational
statement for the elastic problem. Nonlinear algebraic equilibrium equations
are determined and are numerically solved, simultaneously, with the internal
variable differential equations. The numerical predictor-corrector solution pro-
cedure employs the Newton-Raphson method for the nonlinear algebraic equa-
tions and the trapezoidal method for the differential equations. The tangent
matrix required in the Newton-Raphson scheme is a modified version of the
previously determined [14, 18, 19, 20] tangent matrix for the nonlinear elastic
problem.

At the end of the paper, the viscous shell element is employed in a compu-
tational simulation of a stair-step loading and unloading of an aircraft tire.

Viscoelastic Mixed Shell Element

An elastic shell element capable of modeling geometrically nonlinear deforma-
tions of thick laminated composites was developed by Noor, et al. [10, 13,
14, 18, 19, 20] Figure 1. shows the physical variables employed to describe the
energy in the deformed shell. The elastic finite element has nine displacement
nodes with five variables at each node, and four stress nodes with eight vari-
ables at each node, see Figure 2. The constitutive model [18, 19, 20] in the shell
generalized coordinates is abbreviated as

{o} = [Cl{e} (1)
where {0} = (N, Ng, Nog, My, My, My, Qs, Qo) is a vector of stress variables,
{e} = (N, No, Noo, My, My, Mo, Qs, QQ)T is a vector of the Sanders-Budiansky
nonlinear strains[1, 17], and [C] is a matrix of elastic stiflness constants. The
elastic element employs the Hellinger-Resiner mixed variational principle which



is constructed as follows. The complementary form of the energy is integrated
over the volume of the shell and the total work done by external forces is sub-
tracted. This results in Il g which is expressed as follows.
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where § is the volume of the shell, [F] is a flexibility matrix, and W is the work
done by external forces.
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Figure 1. Shell displacement and force variables.

Next, the energy functional, 1 , is discretized by the finite element method
[14]. At the element level, the displacements and stress resultants are approx-
imated by employing interpolation functions with the nodal values shown in
Figure 2. The Sanders-Budiansky nonlinear strains are computed and substi-
tuted into Equation (2) above. After the volume integration is performed for
an element, the Hellinger-Resiner variational expression is given in short-hand
notation as follows.

Wity ({a}, {h}) =V U =W (3)
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and {€} are vectors containing the element’s nodal displacements and strains,

{h} is an element level vector, {S\Zx] and {]/\[\nlm} are operators that produce

the linear and nonlinear contributions to {€} from the nodal displacements, [ﬁ }



is an element level flexibility matrix, and {p} represents the consistent applied
load vector.

Internal strain variables are employed herein to modify the above formulation
making it applicable to a Maxwell type viscoelastic material [6, 7]. Introduce,
in vector form, internal strain fields, {;,} , and matrices of viscous stiffness
constants, [C},] , within the element. The viscous stress vector at a point in
the element is computed as follows.

{ou} = [Cnl{ejn} (4)
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Figure 2. Shell element displacement and stress variables.

The total value of the stress vector, elastic plus viscous, at a point is {0} =
{o} +{o,} . Next, following the computation of the elastic potential, V , in
Equation (3), the energy dissipated by the viscous stresses, () , throughout the
element is computed as follows.

0= [ 1o teran={m} @ = (R} ([543 [un]) @

where {a} is an element level vector. The mixed variational functional for the

. elt,v . -
viscous element, I, , is given by

U =v+Q-U%-w (6)



The model is completed by relating the rate of change of the internal strain
variables to the physical strain variables. Here we employ a simple form of
the Maxwell solid theory by requiring the following differential equations to be

satisfied [6, 7, 4].

d {/8\.'}"”} + {gj”} — d{g} (7)

dt 75 dt
Equations (4) and (7) determine the viscous stresses for a time dependent de-
formation of the element, {Z ({)} . Note, an advantage of this algorithm is that
a variety of viscoelastic models can be employed by simply changing Equation

(7).
At each instant of time, the element equilibrium equations are given by the
first variation of , Equation (6). The equilibrium equations are

(01 ) = (5] 2 ) - [ ) =00 9

and
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where {@;} and [ﬂ//z,m} are the derivatives of the operators [S\',,,,; and j/\[,,ll;,,;,;
with respect to the element displacement variables, {Z} . Equations (8) and (9)
are assembled by standard methods to obtain the global equilibrium equations.
The global equations are then solved simultaneously with Equation (7) (for all
elements.)

The Taylor expansion of Equations (8) and (9) produces the element’s tan-
gent matrix. The resulting element level Newton-Raphson equations for the

increments of the variables A {Z} and A {/l;} are given below.
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where |:j\/7nl:| is the second derivative of the operator []ﬁnlm} with respect to

)

the nodal displacements. FEquations (10) are assembled for all elements and
solved to provide estimates of the variables increments across a time step. The
new elastic strains at the end of the time step are computed at all stress nodes.
The internal strain variables are then estimated at the end of the time step by
employing the trapezoidal method to Equation (7). Next, global equilibrium is
checked. If equilibrium is not satisfied the process is repeated. When equilibrium
is satisfied the required output is computed and the time is advanced.



Tire Stair-Step Loading Simulation

The aircraft tire modeled below is a 32 x 8.8, type VII, bias-ply Shuttle nose-
gear tire which has a 20-ply rated carcass and a maximum speed rating of 217
knots [11, 18, 19, 20]. The tread pattern consists of three circumferential grooves
and the rated inflation pressure is 320 psi.

The details of the tire’s elastic material model are described by Tanner [18].
The tire is a cord-rubber composite and was treated as a laminated material. It
was divided into seven regions in the direction of the meridian (from the center
of the tread region to the rim.) Tire thickness, properties of the plies, ete.
were measured and tabulated. Elastic constants were computed by the law of
mixtures to obtain linear orthotropic stress-strain constitutive models for each
layer. These properties were transformed to the shell coordinate system and
integrated through the thickness of the shell elements.

The viscous material model employed was determined by least-square fitting
tire load-relaxation data [8] to a Prony series of the form

3

fv (t) = Zaj Cf=j fv (0) (11)

Jj=1

where f, () is the relaxing component of the load, f, (0) is the initial load,
Tju are the constants in Equations (7), and «; are factors of the products
[C0] {€j0} so that Equation (4) becomes

n
{ou} = a;[C1{eu} (12)
Jj=1

The values of the constants found by Johnson et al. [§] and used here are
{(aj,Tj)}?:] = {(0.01836, 10),(0.01630, 100), (0.03650, 1000)}.

The tire’s finite element mesh and a sketch of the frictionless loading platform
are shown in Figure 3. The mesh is similar to the ”Model 17 mesh employed
by Tanner [18]. The elastic model has 540 elements and 28,565 degrees of
freedom (not including the Lagrange multipliers used for points that come into
contact.) An additional 103,680 internal variables were added to program the
solution algorithm for the material model described above. Computed elastic
and viscoelastic load-displacement curves, obtained by enforcing a stair-step tire
rim displacement are shown in Figure 4. The finite element load-displacement
hysteresis loop is shown in Figure 5.

Concluding Remarks

An algorithm for converting elastic structural elements based on the Hellinger-
Resiner mixed variational principle to viscoelastic structural elements was pre-
sented. The thirteen node large displacement thick-shell element derived by
Noor and Hartley [14] was employed to describe the algorithm. A finite element



tire model based on this shell element, and used by Tanner [18, 19, 20] to analyze
tire footprints, was modified so that the tire material would represent a Maxwell
solid. A stair-step tire loading and unloading was numerically simulated. The
new computational algorithm functioned successfully.
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Figure 3. Tire finite element model.
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Figure 4. Computed viscous and elastic tire loads.
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